Aizawa, K. (2017). Cognition and behavior. Synthese, 194(11), 4269–4288. https://doi.org/10.1007/s11229-014-0645-5
Allen, T. A., Salz, D. M., McKenzie, S., & Fortin, N. J. (2016). Nonspatial Sequence Coding in CA1 Neurons. Journal of Neuroscience, 36(5), 1547–1563.
Araujo, H. F., Kaplan, J., Damasio, H., & Damasio, A. (2014). Involvement of cortical midline structures in the processing of autobiographical information. PeerJ, 2, e481. https://doi.org/10.7717/peerj.481
Arthur, R. (1994). Space and Relativity in Newton and Leibniz. The British Journal for the Philosophy of Science, 45(1), 219–240.
Babo-Rebelo, M., Richter, C. G., & Tallon-Baudry, C. (2016). Neural Responses to Heartbeats in the Default Network Encode the Self in Spontaneous Thoughts. The Journal of Neuroscience, 36(30), 7829–7840. https://doi.org/10.1523/JNEUROSCI.0262-16.2016
Baltzer-Jaray, K. (2018). Homunculus. In Bad Arguments (pp. 165–167). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119165811.ch31
Barlow, H. (2001a). Redundancy reduction revisited. Network: Computation in Neural Systems, 12(3), 241–253. https://doi.org/10.1080/net.12.3.241.253
Barlow, H. (2001b). The exploitation of regularities in the environment by the brain. Behavioral and Brain Sciences, 24(4), 602–607. https://doi.org/10.1017/S0140525X01000024
Barsalou, L. W. (2010). Grounded Cognition: Past, Present, and Future: Topics in Cognitive Science. Topics in Cognitive Science, 2(4), 716–724. https://doi.org/10.1111/j.1756-8765.2010.01115.x
Bateson, G. (1972a). Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology (pp. xxvi, 545). Jason Aronson.
Bateson, G. (1972b). Steps to an ecology of mind: Collected essays in anthropology, psychiatry, evolution, and epistemology (pp. xxvi, 545). Jason Aronson.
Behrens, T. E. J., Muller, T. H., Whittington, J. C. R., Mark, S., Baram, A. B., Stachenfeld, K. L., & Kurth-Nelson, Z. (2018). What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior. Neuron, 100(2), 490–509. https://doi.org/10.1016/j.neuron.2018.10.002
Bellmund, J. L. S., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415), Article 6415. https://doi.org/10.1126/science.aat6766
BI 025 John Krakauer: Understanding Cognition | Brain Inspired. (n.d.). Retrieved 16 October 2021, from https://braininspired.co/podcast/25/
BI 061 Jörn Diedrichsen and Niko Kriegeskorte: Brain Representations | Brain Inspired. (n.d.). Retrieved 16 October 2021, from https://braininspired.co/podcast/61/
BI 063 Uri Hasson: The Way Evolution Does It | Brain Inspired. (2021, September 30). https://braininspired.co/podcast/63/
Bickhard, M. (2009). The interactivist model. Synthese, 166, 547–591. https://doi.org/10.1007/s11229-008-9375-x
Bickhard, M. H. (2009). The interactivist model. Synthese, 166(3), 547–591.
Birch, J., Ginsburg, S., & Jablonka, E. (2020). Unlimited Associative Learning and the origins of consciousness: A primer and some predictions. Biology & Philosophy, 35(6), 56. https://doi.org/10.1007/s10539-020-09772-0
Bliss, T. (2007). The hippocampus book. The Hippocampus Book., xx, 832–xx, 832.
Brette, R. (2018). Is coding a relevant metaphor for the brain? BioRxiv, 168237. https://doi.org/10.1101/168237
Brette, R. (2019). Is coding a relevant metaphor for the brain? Behavioral and Brain Sciences, 42, e215-undefined. https://doi.org/10.1017/S0140525X19000049
Buzsáki, G. (2006a). Rhythms of the brain (pp. xv, 448). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
Buzsáki, G. (2006b). Rhythms of the brain. (pp. xv, 448). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
Buzsáki, G. (2019a). The Brain from Inside Out. Oxford University Press. https://doi.org/10.1093/oso/9780190905385.001.0001
Buzsáki, G. (2019b). The Brain from Inside Out. Oxford University Press. https://doi.org/10.1093/oso/9780190905385.001.0001
Buzsáki, G. (2020). The Brain–Cognitive Behavior Problem: A Retrospective. ENeuro, 7(4), Article 4. https://doi.org/10.1523/ENEURO.0069-20.2020
Buzsáki, G., & Llinás, R. (2017). Space and time in the brain. Science, 358(6362), 482. https://doi.org/10.1126/science.aan8869
Buzsáki, G., Logothetis, N., & Singer, W. (2013). Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms. Neuron, 80(3), 751–764. https://doi.org/10.1016/j.neuron.2013.10.002
Buzsáki, G., & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature Neuroscience, 16(2), 130–138. https://doi.org/10.1038/nn.3304
Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 14(11), 506–515. https://doi.org/10.1016/j.tics.2010.09.001
Carruthers, P. (2006). The architecture of the mind: Massive modularity and the flexibility of thought (pp. xviii, 462). Clarendon Press/Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199207077.001.0001
Charles, E. (2012). Ecological Psychology. In Encyclopedia of Human Behavior: Second Edition (pp. 7–12). https://doi.org/10.1016/B978-0-12-375000-6.00142-7
Chomsky, N. (1959). Review of V erbal Behavior. Language, 35(1), 26--58.
Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177–184. https://doi.org/10.1016/j.conb.2007.03.005
Ciaramelli, E. (2008). The role of ventromedial prefrontal cortex in navigation: A case of impaired wayfinding and rehabilitation. Neuropsychologia, 46(7), 2099–2105. https://doi.org/10.1016/j.neuropsychologia.2007.11.029
Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. Attention, Perception, & Psychophysics, 81(7), 2265–2287. https://doi.org/10.3758/s13414-019-01760-1
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. https://doi.org/10.1017/S0140525X12000477
Cobb, M. (2020, February 27). Why your brain is not a computer. The Guardian. https://www.theguardian.com/science/2020/feb/27/why-your-brain-is-not-a-computer-neuroscience-neural-networks-consciousness
Constant, A., Clark, A., & Friston, K. J. (2021a). Representation Wars: Enacting an Armistice Through Active Inference. Frontiers in Psychology, 11, 3798. https://doi.org/10.3389/fpsyg.2020.598733
Constant, A., Clark, A., & Friston, K. J. (2021b). Representation Wars: Enacting an Armistice Through Active Inference. Frontiers in Psychology, 11, 3798. https://doi.org/10.3389/fpsyg.2020.598733
Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. J. (2016a). Organizing conceptual knowledge in humans with a gridlike code. Science, 352(6292), 1464. https://doi.org/10.1126/science.aaf0941
Constantinescu, A. O., O’Reilly, J. X., & Behrens, T. E. J. (2016b). Organizing conceptual knowledge in humans with a gridlike code. Science, 352(6292), 1464. https://doi.org/10.1126/science.aaf0941
de Pasquale, F., Della Penna, S., Snyder, A. Z., Marzetti, L., Pizzella, V., Romani, G. L., & Corbetta, M. (2012). A Cortical Core for Dynamic Integration of Functional Networks in the Resting Human Brain. Neuron, 74(4), 753–764. https://doi.org/10.1016/j.neuron.2012.03.031
Dennett, D. C. (1997). The Cartesian theater and “Filling In” the stream of consciousness. In N. Block, O. Flanagan, & G. Güzeldere (Eds.), The Nature of Consciousness: Philosophical Debates (pp. 83--88). MIT Press.
Dennett, D. C., & Kinsbourne, M. (1992). Escape From the Cartesian Theater. Behavioral and Brain Sciences, 15(2), 234–247. https://doi.org/10.1017/s0140525x00068527
Descartes, R., 1596-1650. (1993). Discourse on method ; and, Meditations on first philosophy. Third edition. Indianapolis : Hackett Pub. Co., [1993] ©1993. https://search.library.wisc.edu/catalog/999718190702121
Dinstein, I., Heeger, D. J., & Behrmann, M. (2015). Neural variability: Friend or foe? Trends in Cognitive Sciences, 19(6), 322–328. https://doi.org/10.1016/j.tics.2015.04.005
DiSalle, R. (2002). Newton’s philosophical analysis of space and time. In I. B. Cohen & G. E. Smith (Eds.), The Cambridge Companion to Newton (pp. 33--56). Cambridge University Press.
DiSalle, R. (2006a). Understanding Space-Time: The Philosophical Development of Physics From Newton to Einstein. Cambridge University Press.
DiSalle, R. (2006b). Understanding Space-Time: The Philosophical Development of Physics From Newton to Einstein. Cambridge University Press.
Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463(7281), 657–661. https://doi.org/10.1038/nature08704
Dolan, R. J. (2002). Emotion, Cognition, and Behavior. 298, 4.
Dotson, N. M., & Yartsev, M. M. (2021). Nonlocal spatiotemporal representation in the hippocampus of freely flying bats. Science (New York, N.Y.), 373(6551), 242–247. https://doi.org/10.1126/science.abg1278
Drew, T., Vo, M. L. H., & Wolfe, J. M. (2013a). “The invisible gorilla strikes again: Sustained inattentional blindness in expert observers”. Psychological Science, 24(9), 1848–1853. https://doi.org/10.1177/0956797613479386
Drew, T., Vo, M. L. H., & Wolfe, J. M. (2013b). “The invisible gorilla strikes again: Sustained inattentional blindness in expert observers”. Psychological Science, 24(9), 1848–1853. https://doi.org/10.1177/0956797613479386
Duff, M., & Brown-Schmidt, S. (2012). The hippocampus and the flexible use and processing of language. Frontiers in Human Neuroscience, 6, 69. https://doi.org/10.3389/fnhum.2012.00069
Ebbinghaus, H. (2013). Memory: A Contribution to Experimental Psychology. Annals of Neurosciences, 20(4). https://doi.org/10.5214/ans.0972.7531.200408
Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44(1), 109–120. https://doi.org/10.1016/j.neuron.2004.08.028
Eichenbaum, H. (2017a). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 1785–1796. https://doi.org/10.1152/jn.00005.2017
Eichenbaum, H. (2017b). The role of the hippocampus in navigation is memory. Journal of Neurophysiology, 117(4), 1785–1796. https://doi.org/10.1152/jn.00005.2017
Eichenbaum, H. (2017c). Prefrontal–hippocampal interactions in episodic memory. Nature Reviews Neuroscience, 18(9), 547–558. https://doi.org/10.1038/nrn.2017.74
Eichenbaum, H., & Cohen, N. J. (1988). Representation in the hippocampus: What do hippocampal neurons code? Trends in Neurosciences, 11(6), 244–248. https://doi.org/10.1016/0166-2236(88)90100-2
Eichenbaum, H., & Cohen, N. J. (2014). Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function? Neuron, 83(4), 764–770. https://doi.org/10.1016/j.neuron.2014.07.032
Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The Hippocampus, Memory, and Place Cells: Is It Spatial Memory or a Memory Space? Neuron, 23(2), 209–226. https://doi.org/10.1016/S0896-6273(00)80773-4
Eliav, T., Maimon, S. R., Aljadeff, J., Tsodyks, M., Ginosar, G., Las, L., & Ulanovsky, N. (2021). Multiscale representation of very large environments in the hippocampus of flying bats. Science (New York, N.Y.), 372(6545), eabg4020. https://doi.org/10.1126/science.abg4020
Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The Role of Medial Prefrontal Cortex in Memory and Decision Making. Neuron, 76(6), 1057–1070. https://doi.org/10.1016/j.neuron.2012.12.002
Fazelpour, S., & Thompson, E. (2015). The Kantian brain: Brain dynamics from a neurophenomenological perspective. Current Opinion in Neurobiology, 31, 223–229. https://doi.org/10.1016/j.conb.2014.12.006
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105–118. https://doi.org/10.1038/nrn2979
Fox, K. C. R., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., & Christoff, K. (2015). The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage, 111, 611–621. https://doi.org/10.1016/j.neuroimage.2015.02.039
Frank, L. M., Stanley, G. B., & Brown, E. N. (2004). Hippocampal Plasticity across Multiple Days of Exposure to Novel Environments. The Journal of Neuroscience, 24(35), 7681–7689. https://doi.org/10.1523/JNEUROSCI.1958-04.2004
Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain: Why cognitive science will transform neuroscience. (pp. xvi, 319). Wiley-Blackwell. https://doi.org/10.1002/9781444310498
Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. The MIT Press. https://doi.org/10.7551/mitpress/2076.001.0001
Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.
Giere, R. N. (2004a). How Models Are Used to Represent Reality. Philosophy of Science, 71(5), 742–752. https://doi.org/10.1086/425063
Giere, R. N. (2004b). How Models Are Used to Represent Reality. Philosophy of Science, 71(5), 742–752. https://doi.org/10.1086/425063
Giere, R. N. (2006). Scientific Perspectivism. University of Chicago Press.
Goldstein, K. (1995). The organism: A holistic approach to biology derived from pathological data in man (p. 422). Zone Books.
Golonka, S., & Wilson, A. D. (2019). Ecological representations. Ecological Psychology, 31(3), 235–253. https://doi.org/10.1080/10407413.2019.1615224
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. https://doi.org/10.1073/pnas.0135058100
Gustafson, N. J., & Daw, N. D. (2011). Grid Cells, Place Cells, and Geodesic Generalization for Spatial Reinforcement Learning. PLoS Computational Biology, 7(10), Article 10. https://doi.org/10.1371/journal.pcbi.1002235
Hampson, R. E., Simeral, J. D., & Deadwyler, S. A. (1999). Distribution of spatial and nonspatial information in dorsal hippocampus. Nature, 402(6762), 610–614. https://doi.org/10.1038/45154
Hasson, U., Nastase, S. A., & Goldstein, A. (2020a). Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks. Neuron, 105(3), 416–434. https://doi.org/10.1016/j.neuron.2019.12.002
Hasson, U., Nastase, S. A., & Goldstein, A. (2020b). Direct Fit to Nature: An Evolutionary Perspective on Biological and Artificial Neural Networks. Neuron, 105(3), 416–434. https://doi.org/10.1016/j.neuron.2019.12.002
Hebb, D. O. (1949). The organization of behavior a neuropsychological theory. Wiley. http://books.google.com/books?id=fGlqAAAAMAAJ
Heyes, C. (2018a). Cognitive gadgets: The cultural evolution of thinking. (p. 292). Harvard University Press. https://doi.org/10.4159/9780674985155
Heyes, C. (2018b). Cognitive gadgets: The cultural evolution of thinking. (p. 292). Harvard University Press. https://doi.org/10.4159/9780674985155
Heyes, C. (2018c). Cognitive gadgets: The cultural evolution of thinking. (p. 292). Harvard University Press. https://doi.org/10.4159/9780674985155
Hill, N. J., Gupta, D., Brunner, P., Gunduz, A., Adamo, M. A., Ritaccio, A., & Schalk, G. (2012). Recording Human Electrocorticographic (ECoG) Signals for Neuroscientific Research and Real-time Functional Cortical Mapping. Journal of Visualized Experiments, 64, 3993. https://doi.org/10.3791/3993
Hofstadter, D. (2007). I am a strange loop (pp. xix, 412). Basic Books.
Hofstadter, D. R., ,. (2007). I am a strange loop. Basic Books; /z-wcorg/.
Holleman, G. A., Hooge, I. T. C., Kemner, C., & Hessels, R. S. (2021). The Reality of “Real-Life” Neuroscience: A Commentary on Shamay-Tsoory and Mendelsohn (2019). Perspectives on Psychological Science, 16(2), 461–465. https://doi.org/10.1177/1745691620917354
Huijbers, W., Pennartz, C. M., Cabeza, R., & Daselaar, S. M. (2009). When Learning and Remembering Compete: A Functional MRI Study. PLOS Biology, 7(1), e1000011. https://doi.org/10.1371/journal.pbio.1000011
Hutto, D. (2017). Memory and narrativity. Faculty of Law, Humanities and the Arts - Papers (Archive), 192–204.
Hwang, J. W., Xin, S. C., Ou, Y. M., Zhang, W. Y., Liang, Y. L., Chen, J., Yang, X. Q., Chen, X. Y., Guo, T. W., Yang, X. J., Ma, W. H., Li, J., Zhao, B. C., Tu, Y., & Kong, J. (2016). Enhanced default mode network connectivity with ventral striatum in subthreshold depression individuals. Journal of Psychiatric Research, 76, 111–120. https://doi.org/10.1016/j.jpsychires.2016.02.005
Jonas, E., & Kording, K. P. (2017). Could a Neuroscientist Understand a Microprocessor? PLoS Computational Biology, 13(1), e1005268. https://doi.org/10.1371/journal.pcbi.1005268
Kahneman, D. (2011a). Thinking, fast and slow.
Kahneman, D. (2011b). Thinking, fast and slow.
Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D., & Kandel, E. R. (2004). Increased Attention to Spatial Context Increases Both Place Field Stability and Spatial Memory. Neuron, 42(2), 283–295. https://doi.org/10.1016/S0896-6273(04)00192-8
Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48(7), 805–825. https://doi.org/10.1016/j.cortex.2011.04.006
Kirmayer, L. J., Worthman, C. M., Kitayama, S., Lemelson, R., & Cummings, C. (Eds.). (2020). Culture, Mind, and Brain: Emerging Concepts, Models, and Applications (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781108695374
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron, 93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041
Kriegeskorte, N., & Diedrichsen, J. (2019). Peeling the Onion of Brain Representations. Annual Review of Neuroscience, 42, 407–432. https://doi.org/10.1146/annurev-neuro-080317-061906
Kuhrt, D., St. John, N. R., Bellmund, J. L. S., Kaplan, R., & Doeller, C. F. (2021). An immersive first-person navigation task for abstract knowledge acquisition. Scientific Reports, 11(1), 5612. https://doi.org/10.1038/s41598-021-84599-7
Kurczek, J., Brown-Schmidt, S., & Duff, M. C. (2013). Hippocampal contributions to language: Evidence of referential processing deficits in amnesia. Journal of Experimental Psychology. General, 142(4), 1346–1354. https://doi.org/10.1037/a0034026
Lakatos, P., Karmos, G., Mehta, A., Ulbert, I., & Schroeder, C. (2008). Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection. Science (New York, N.Y.), 320, 110–113. https://doi.org/10.1126/science.1154735
Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to Western thought. Basic Books.
Lakoff, G., Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.206.1458
Langille, J. J., & Brown, R. E. (2018). The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition. Frontiers in Systems Neuroscience, 12, 52. https://doi.org/10.3389/fnsys.2018.00052
Lara, A. H., & Wallis, J. D. (2015). The Role of Prefrontal Cortex in Working Memory: A Mini Review. Frontiers in Systems Neuroscience, 9, 173. https://doi.org/10.3389/fnsys.2015.00173
Llinas, R. (2014). The olivo-cerebellar system: A key to understanding the functional significance of intrinsic oscillatory brain properties. Frontiers in Neural Circuits, 7, 96. https://doi.org/10.3389/fncir.2013.00096
Luczak, A., Barthó, P., Marguet, S. L., Buzsáki, G., & Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 347–352. https://doi.org/10.1073/pnas.0605643104
MacKay, D. G., Stewart, R., & Burke, D. M. (1998a). H.M. revisited: Relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10(3), 377–394. https://doi.org/10.1162/089892998562807
MacKay, D. G., Stewart, R., & Burke, D. M. (1998b). H.M. revisited: Relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10(3), 377–394. https://doi.org/10.1162/089892998562807
Mahoney, M. J. (1974). Cognition and behavior modification. (pp. xv, 351). Ballinger.
Massimi, M. (2018). Four Kinds of Perspectival Truth. Philosophy and Phenomenological Research, 96(2), 342–359. https://doi.org/10.1111/phpr.12300
Massimi, M., & McCoy, C. D. (Eds.). (2020). Understanding Perspectivism: Scientific Challenges and Methodological Prospects. Taylor & Francis. https://library.oapen.org/handle/20.500.12657/25065
Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houdé, O., Crivello, F., Joliot, M., Petit, L., & Tzourio-Mazoyer, N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 287–298. https://doi.org/10.1016/s0361-9230(00)00437-8
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457. https://doi.org/10.1037/0033-295X.102.3.419
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. https://doi.org/10.1016/j.tics.2011.08.003
Michaelian, K., & Sutton, J. (2017). Memory. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2017). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2017/entries/memory/
Milivojevic, B., & Doeller, C. F. (2013a). Mnemonic networks in the hippocampal formation: From spatial maps to temporal and conceptual codes. Journal of Experimental Psychology: General, 142(4), 1231–1241. https://doi.org/10.1037/a0033746
Milivojevic, B., & Doeller, C. F. (2013b). Mnemonic networks in the hippocampal formation: From spatial maps to temporal and conceptual codes. Journal of Experimental Psychology. General, 142(4), 1231–1241. https://doi.org/10.1037/a0033746
Miller, G. A. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 7(3), 141–144. https://doi.org/10.1016/S1364-6613(03)00029-9
Momennejad, I. (2020a). Learning Structures: Predictive Representations, Replay, and Generalization. Understanding Memory: Which Level of Analysis?, 32, 155–166. https://doi.org/10.1016/j.cobeha.2020.02.017
Momennejad, I. (2020b). Learning Structures: Predictive Representations, Replay, and Generalization. Understanding Memory: Which Level of Analysis?, 32, 155–166. https://doi.org/10.1016/j.cobeha.2020.02.017
Monaco, J. D., Rao, G., Roth, E. D., & Knierim, J. J. (2014). Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nature Neuroscience, 17(5), 725–731. https://doi.org/10.1038/nn.3687
Moon, H.-J., Gauthier, B., Park, H.-D., Faivre, N., & Blanke, O. (2020). Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex [Preprint]. Neuroscience. https://doi.org/10.1101/2020.09.13.295246
Moore, E. C., Fisch, M. H., Kloesei, C. J. W., Roberts, D. D., & Ziegler, L. A. (Eds.). (1984). Writings of Charles S. Peirce: A Chronological Edition, Volume 2. Indiana University Press; JSTOR. http://www.jstor.org/stable/j.ctt16gh7rt
Morton, T. (2010). The ecological thought. Harvard University Press.
Moser, E. I., Kropff, E., & Moser, M.-B. (2008). Place Cells, Grid Cells, and the Brain’s Spatial Representation System. Annual Review of Neuroscience, 31(1), 69–89. https://doi.org/10.1146/annurev.neuro.31.061307.090723
Moser, M.-B., Rowland, D. C., & Moser, E. I. (2015). Place Cells, Grid Cells, and Memory. Cold Spring Harbor Perspectives in Biology, 7(2), a021808. https://doi.org/10.1101/cshperspect.a021808
Nakajima, M., Schmitt, L. I., & Halassa, M. M. (2019). Prefrontal Cortex Regulates Sensory Filtering through a Basal Ganglia-to-Thalamus Pathway. Neuron, 103(3), 445-458.e10. https://doi.org/10.1016/j.neuron.2019.05.026
Northoff, G. (2016a). Spatiotemporal psychopathology I: No rest for the brain’s resting state activity in depression? Spatiotemporal psychopathology of depressive symptoms. Journal of Affective Disorders, 190, 854–866. https://doi.org/10.1016/j.jad.2015.05.007
Northoff, G. (2016b). Neuroscience and Whitehead I: Neuro-ecological Model of Brain. Axiomathes, 26(3), 219–252. https://doi.org/10.1007/s10516-016-9286-2
Northoff, G. (2018a). The brain’s spontaneous activity and its psychopathological symptoms – “Spatiotemporal binding and integration”. Neuroimaging in Psychiatry: Steps toward the Clinical Application of Brain Imaging in Psychiatric Disorders, 80, 81–90. https://doi.org/10.1016/j.pnpbp.2017.03.019
Northoff, G. (2018b). The Spontaneous Brain: From the Mind-Body to the World-Brain Problem. MIT Press.
Northoff, G. (2018c). The Spontaneous Brain: From the Mind-Body to the World-Brain Problem. MIT Press.
Northoff, G., & Bermpohl, F. (2004a). Cortical midline structures and the self. Trends in Cognitive Sciences, 8(3), 102–107. https://doi.org/10.1016/j.tics.2004.01.004
Northoff, G., & Bermpohl, F. (2004b). Cortical midline structures and the self. Trends in Cognitive Sciences, 8(3), 102–107. https://doi.org/10.1016/j.tics.2004.01.004
Northoff, G., Duncan, N. W., & Hayes, D. J. (2010). The brain and its resting state activity—Experimental and methodological implications. Progress in Neurobiology, 92(4), 593–600. https://doi.org/10.1016/j.pneurobio.2010.09.002
Northoff, G., & Huang, Z. (2017). How do the brain’s time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC). Neuroscience & Biobehavioral Reviews, 80, 630–645. https://doi.org/10.1016/j.neubiorev.2017.07.013
Northoff, G., & Stanghellini, G. (2016). How to Link Brain and Experience? Spatiotemporal Psychopathology of the Lived Body. Frontiers in Human Neuroscience, 10, 76. https://doi.org/10.3389/fnhum.2016.00172
Northoff, G., Wainio-Theberge, S., & Evers, K. (2020). Is temporo-spatial dynamics the “common currency” of brain and mind? In Quest of “Spatiotemporal Neuroscience”. Physics of Life Reviews, 33, 34–54. https://doi.org/10.1016/j.plrev.2019.05.002
O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175. https://doi.org/10.1016/0006-8993(71)90358-1
O’Keefe, J., & Krupic, J. (2021a). Do hippocampal pyramidal cells respond to nonspatial stimuli? Physiological Reviews, 101(3), 1427–1456. https://doi.org/10.1152/physrev.00014.2020
O’Keefe, J., & Krupic, J. (2021b). Do hippocampal pyramidal cells respond to nonspatial stimuli? Physiological Reviews, 101(3), 1427–1456. https://doi.org/10.1152/physrev.00014.2020
O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press. https://repository.arizona.edu/handle/10150/620894
Park, H.-D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature Neuroscience, 17(4), 612–618. https://doi.org/10.1038/nn.3671
Penfield, W. (1952). MEMORY MECHANISMS. Archives of Neurology And Psychiatry, 67(2), 178. https://doi.org/10.1001/archneurpsyc.1952.02320140046005
Poeppel, D., & Adolfi, F. (2020). Against the Epistemological Primacy of the Hardware: The Brain from Inside Out, Turned Upside Down. ENeuro, 7(4), Article 4. https://doi.org/10.1523/ENEURO.0215-20.2020
Poldrack, R. (2017). Neuroscience: The risks of reading the brain. Nature, 541(7636), 156–156. https://doi.org/10.1038/541156a
Putman, R. J., & Wratten, S. D. (1983). Principles of Ecology. Springer Netherlands. https://doi.org/10.1007/978-94-011-6948-6
Qin, J., Chen, S.-G., Hu, D., Zeng, L.-L., Fan, Y.-M., Chen, X.-P., & Shen, H. (2015). Predicting individual brain maturity using dynamic functional connectivity. Frontiers in Human Neuroscience, 9, 418. https://doi.org/10.3389/fnhum.2015.00418
Qin, P., & Northoff, G. (2011). How is our self related to midline regions and the default-mode network? NeuroImage, 57(3), 1221–1233. https://doi.org/10.1016/j.neuroimage.2011.05.028
Quammen, D. (2018). The tangled tree: A radical new history of life (First Simon&Schuster hardcover edition.). Simon & Schuster.
Raichle, M. E. (2011). The Restless Brain. Brain Connectivity, 1(1), 3–12. https://doi.org/10.1089/brain.2011.0019
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030
Ranck, J. B. (1973). Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats: Part I. Behavioral correlates and firing repertoires. Experimental Neurology, 41(2), 462–531. https://doi.org/10.1016/0014-4886(73)90290-2
Rescher, N. (1991). G. W. Leibniz’s Monadology. University of Pittsburgh Press; JSTOR. https://doi.org/10.2307/j.ctt6wrc4t
Rescorla, M. (2019). The Language of Thought Hypothesis. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2019). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2019/entries/language-thought/
Roediger, H. L. (1980). Memory metaphors in cognitive psychology. Memory & Cognition, 8(3), 231–246. https://doi.org/10.3758/BF03197611
Rorty, R. (1999). Philosophy and Social Hope. Penguin Books.
Rouault, M., Seow, T., Gillan, C. M., & Fleming, S. M. (2018). Psychiatric Symptom Dimensions Are Associated With Dissociable Shifts in Metacognition but Not Task Performance. Biological Psychiatry, 84(6), 443–451. https://doi.org/10.1016/j.biopsych.2017.12.017
Russo, A. A., Khajeh, R., Bittner, S. R., Perkins, S. M., Cunningham, J. P., Abbott, L. F., & Churchland, M. M. (2020). Neural Trajectories in the Supplementary Motor Area and Motor Cortex Exhibit Distinct Geometries, Compatible with Different Classes of Computation. Neuron, 107(4), 745-758.e6. https://doi.org/10.1016/j.neuron.2020.05.020
Ryan, K. J., & Gallagher, S. (2020). Between Ecological Psychology and Enactivism: Is There Resonance? Frontiers in Psychology, 11, 1147. https://doi.org/10.3389/fpsyg.2020.01147
Ryle, G. (1949). The Concept of Mind (Issue 234, pp. 23–37). Hutchinson & Co.
Sautoy, M. du. (2019, March 9). Can AI become conscious? Bach, Escher and Gödel’s ‘strange loops’ may have the answer. The Guardian. https://www.theguardian.com/culture/2019/mar/09/bach-escher-godel-douglas-hofstadter-consciousness-ai-revolution-mathematical-idea-art-music
Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary learning systems within the hippocampus: A neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1711), 20160049. https://doi.org/10.1098/rstb.2016.0049
Schiller, D., Eichenbaum, H., Buffalo, E. A., Davachi, L., Foster, D. J., Leutgeb, S., & Ranganath, C. (2015). Memory and Space: Towards an Understanding of the Cognitive Map. The Journal of Neuroscience, 35(41), 13904–13911. https://doi.org/10.1523/JNEUROSCI.2618-15.2015
Schlosser, G. (2018). A Short History of Nearly Every Sense—The Evolutionary History of Vertebrate Sensory Cell Types. Integrative and Comparative Biology, 58(2), 301–316. https://doi.org/10.1093/icb/icy024
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20(1), 11–21. https://doi.org/10.1136/jnnp.20.1.11
Serrano, B., Baños, R. M., & Botella, C. (2016). Virtual reality and stimulation of touch and smell for inducing relaxation: A randomized controlled trial. Computers in Human Behavior, 55, 1–8. https://doi.org/10.1016/j.chb.2015.08.007
Seth, A. (2018). Being a beast machine: The origins of selfhood in control-oriented interoceptive inference [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/vg5da
Shamay-Tsoory, S. G., & Mendelsohn, A. (2019). Real-Life Neuroscience: An Ecological Approach to Brain and Behavior Research. Perspectives on Psychological Science, 14(5), 841–859. https://doi.org/10.1177/1745691619856350
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. In K. Pawlik & M. Rosenzweig (Eds.), International Handbook of Psychology.
Smetacek, V., & Mechsner, F. (2004). Making sense. Nature, 432(7013), 21–21. https://doi.org/10.1038/432021a
Smolin, L. (2018). The dynamics of difference. Foundations of Physics, 48(2), 121–134. https://doi.org/10.1007/s10701-018-0141-8
Spade, P. V., & Panaccio, C. (2019). William of Ockham. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2019). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2019/entries/ockham/
Squire, L. R. (2009). The Legacy of Patient H.M. for Neuroscience. Neuron, 61(1), 6–9. https://doi.org/10.1016/j.neuron.2008.12.023
Stanghellini, G., Ballerini, M., Presenza, S., Mancini, M., Northoff, G., & Cutting, J. (2017). Abnormal Time Experiences in Major Depression: An Empirical Qualitative Study. Psychopathology, 50(2), 125–140. https://doi.org/10.1159/000452892
Stefanics, G., Hangya, B., Hernádi, I., Winkler, I., Lakatos, P., & Ulbert, I. (2010). Phase Entrainment of Human Delta Oscillations Can Mediate the Effects of Expectation on Reaction Speed. The Journal of Neuroscience, 30(41), 13578–13585. https://doi.org/10.1523/JNEUROSCI.0703-10.2010
Studies, C. S. S., & Peirce. (1883). Studies in Logic. By Members of the Johns Hopkins University.
Theves, S., Fernández, G., & Doeller, C. F. (2020). The Hippocampus Maps Concept Space, Not Feature Space. The Journal of Neuroscience, 40(38), 7318. https://doi.org/10.1523/JNEUROSCI.0494-20.2020
Thomas, N. J. T. (2021). Mental Imagery. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021). Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2021/entries/mental-imagery/
Thompson, E. (2007). Mind in Life: Biology, Phenomenology, and the Sciences of Mind. Harvard University Press.
Tierney, A. L., & Nelson, C. A. (2009). Brain Development and the Role of Experience in the Early Years. Zero to Three, 30(2), 9–13.
Tolman, E. C. (1922). A New Formula for Behaviorism. Psychological Review, 29(1), 44–53. https://doi.org/10.1037/h0070289
Tolman, E. C. (1948a). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. https://doi.org/10.1037/h0061626
Tolman, E. C. (1948b). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208. https://doi.org/10.1037/h0061626
Topalovic, U., Aghajan, Z. M., Villaroman, D., Hiller, S., Christov-Moore, L., Wishard, T. J., Stangl, M., Hasulak, N. R., Inman, C. S., Fields, T. A., Rao, V. R., Eliashiv, D., Fried, I., & Suthana, N. (2020). Wireless Programmable Recording and Stimulation of Deep Brain Activity in Freely Moving Humans. Neuron, 108(2), 322-334.e9. https://doi.org/10.1016/j.neuron.2020.08.021
Tromp, J., Peeters, D., Meyer, A. S., & Hagoort, P. (2018). The combined use of virtual reality and EEG to study language processing in naturalistic environments. Behavior Research Methods, 50(2), 862–869. https://doi.org/10.3758/s13428-017-0911-9
Uddin, L. Q., Clare Kelly, A. M., Biswal, B. B., Xavier Castellanos, F., & Milham, M. P. (2008). Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Human Brain Mapping, 30(2), 625–637. https://doi.org/10.1002/hbm.20531
Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience (pp. xx, 308). The MIT Press.
Vertes, R. P. (2006). Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience, 142(1), 1–20. https://doi.org/10.1016/j.neuroscience.2006.06.027
Waschke, L., Kloosterman, N. A., Obleser, J., & Garrett, D. D. (2021). Behavior needs neural variability. Neuron, 109(5), 751–766. https://doi.org/10.1016/j.neuron.2021.01.023
Weil, L. G., Fleming, S. M., Dumontheil, I., Kilford, E. J., Weil, R. S., Rees, G., Dolan, R. J., & Blakemore, S.-J. (2013). The development of metacognitive ability in adolescence. Consciousness and Cognition, 22(1), 264–271. https://doi.org/10.1016/j.concog.2013.01.004
Wells, A. J. (2002). Gibson’s Affordances and Turing’s Theory of Computation. Ecological Psychology, 14(3), 140–180. https://doi.org/10.1207/S15326969ECO1403_3
Wells, A. J. (2004). Cognitive Science and the Turing Machine: An Ecological Perspective. In C. Teuscher (Ed.), Alan Turing: Life and Legacy of a Great Thinker (pp. 271–292). Springer. https://doi.org/10.1007/978-3-662-05642-4_11
Whittington, J. C., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens, T. E. (2019). The Tolman-Eichenbaum Machine: Unifying space and relational memory through generalisation in the hippocampal formation. BioRxiv, 770495. https://doi.org/10.1101/770495
Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., & Behrens, T. E. J. (2020). The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell, 183(5), 1249-1263.e23. https://doi.org/10.1016/j.cell.2020.10.024
Wilbur, H. M. (1980). Complex Life Cycles. Annual Review of Ecology and Systematics, 11(1), 67–93. https://doi.org/10.1146/annurev.es.11.110180.000435
Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science (New York, N.Y.), 261(5124), 1055–1058. https://doi.org/10.1126/science.8351520
Wimmer, R. D., Schmitt, L. I., Davidson, T. J., Nakajima, M., Deisseroth, K., & Halassa, M. M. (2015). Thalamic control of sensory selection in divided attention. Nature, 526(7575), 705–709. https://doi.org/10.1038/nature15398
Wittgenstein, L. (1953). Philosophical Investigations (Vol. 17, Issue 69, p. 362). Wiley-Blackwell.
Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory in hippocampal neuronal activity. Nature, 397(6720), 613–616. https://doi.org/10.1038/17605
Wu, C. M., Schulz, E., Garvert, M. M., Meder, B., & Schuck, N. W. (2020). Similarities and differences in spatial and non-spatial cognitive maps. PLOS Computational Biology, 16(9), e1008149. https://doi.org/10.1371/journal.pcbi.1008149
Xue, S.-W., Li, D., Weng, X.-C., Northoff, G., & Li, D.-W. (2014). Different Neural Manifestations of Two Slow Frequency Bands in Resting Functional Magnetic Resonance Imaging: A Systemic Survey at Regional, Interregional, and Network Levels. Brain Connectivity, 4(4), 242–255. https://doi.org/10.1089/brain.2013.0182
Yuste, R., MacLean, J. N., Smith, J., & Lansner, A. (2005). The cortex as a central pattern generator. Nature Reviews. Neuroscience, 6(6), 477–483. https://doi.org/10.1038/nrn1686
Zeithamova, D., & Bowman, C. R. (2020). Generalization and the hippocampus: More than one story? Neurobiology of Learning and Memory, 175, 107317. https://doi.org/10.1016/j.nlm.2020.107317
Zimnik, A. J., & Churchland, M. M. (2021). Independent generation of sequence elements by motor cortex. Nature Neuroscience, 24(3), 412–424. https://doi.org/10.1038/s41593-021-00798-5
Santangelo V, Cavallina C, Colucci P, Santori A, Macrì S, McGaugh JL, Campolongo P. Enhanced brain activity associated with memory access in highly superior autobiographical memory. Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7795-7800. doi: 10.1073/pnas.1802730115. Epub 2018 Jul 9. PMID: 29987025; PMCID: PMC6064994.
Michael Bond in Wayfinding.
Squire LR. The legacy of patient H.M. for neuroscience. Neuron. 2009 Jan 15;61(1):6-9. doi: 10.1016/j.neuron.2008.12.023. PMID: 19146808; PMCID: PMC2649674.
Posterior parahippocampal place learning in H.M
Véronique D Bohbot 1, Suzanne Corkin
https://pubmed.ncbi.nlm.nih.gov/17598157/
Nicolescu, Basarab (2012). Transdisciplinarity: the hidden third, between the subject and the object. Human and Social Studies 1 (1):13-28.
Chandra, S., Sharma, S., Chaudhuri, R. et al. Episodic and associative memory from spatial scaffolds in the hippocampus. Nature (2025). https://doi.org/10.1038/s41586-024-08392-y
https://www.msdmanuals.com/home/brain-spinal-cord-and-nerve-disorders/brain-dysfunction/brain-dysfunction-by-location
Parker, Elizabeth S.; Cahill, Larry; McGaugh, James L. (2006-02-01). "A Case of Unusual Autobiographical Remembering". Neurocase. 12 (1): 35–49. CiteSeerX 10.1.1.502.8669. doi:10.1080/13554790500473680. ISSN 1355-4794. PMID 16517514. S2CID 29448970.
1. Tolman, Edward C. (July 1948). "Cognitive maps in rats and men". Psychological Review. 55 (4): 189–208. doi:10.1037/h0061626. PMID 18870876. S2CID 42496633.
2. ^ Ungar, Simon (2005). "Cognitive maps". In Caves, Roger W. (ed.). Encyclopedia of the City. Abingdon; New York: Routledge. p. 79. doi:10.4324/9780203484234. ISBN 9780415252256. OCLC 55948158.
3. ^ Eden, Colin (July 1988). "Cognitive mapping". European Journal of Operational Research. 36 (1): 1–13. doi:10.1016/0377-2217(88)90002-1. In the practical setting of work in with a team of busy managers cognitive mapping is a tool for building interest from all team members in the problem solving activity. [...] The cycle of problem construction, making sense, defining the problem, and declaring a portfolio of solutions, which I have discussed elsewhere (Eden, 1982) is the framework that guides the process of working with teams. Thus building and working with the cognitive maps of each individual is primarily aimed at helping each team member reflectively 'construct' and 'make sense' of the situation they believe the team is facing. (pp. 7–8)
4. ^ Fiol, C. Marlene; Huff, Anne Sigismund (May 1992). "Maps for managers: Where are we? Where do we go from here?" (PDF). Journal of Management Studies. 29 (3): 267–285. doi:10.1111/j.1467-6486.1992.tb00665.x. For geographers, a map is a means of depicting the world so that people understand where they are and where they can go. For cognitive researchers, who often use the idea of a 'map' as an analogy, the basic idea is the same. Cognitive maps are graphic representations that locate people in relation to their information environments. Maps provide a frame of reference for what is known and believed. They highlight some information and fail to include other information, either because it is deemed less important, or because it is not known. (p. 267)
5. ^ Ambrosini, Véronique; Bowman, Cliff (2002). "Mapping successful organizational routines". In Huff, Anne Sigismund; Jenkins, Mark (eds.). Mapping strategic knowledge. London; Thousand Oaks, CA: SAGE Publications. pp. 19–45. ISBN 0761969497. OCLC 47900801. pp. 21–22: We shall not explain here what cognitive maps are about as this has been done extensively elsewhere (Huff, 1990). Let us just say that cognitive maps are the representation of an individual's personal knowledge, of an individual's own experience (Weick and Bougon, 1986), and they are ways of representing individuals' views of reality (Eden et al., 1981). There are various types of cognitive maps (Huff, 1990).
6. ^ Jump up to:a b World Leaders in Research-Based User Experience. "Cognitive Maps, Mind Maps, and Concept Maps: Definitions". Nielsen Norman Group. Retrieved 2020-04-06.
7. ^ Kitchin, Robert M. (1994). "Cognitive maps: what are they and why study them?" (PDF). Journal of Environmental Psychology. 14 (1): 1–19. doi:10.1016/S0272-4944(05)80194-X.
8. ^ Jump up to:a b c O'Keefe, John; Nadel, Lynn (1978). The hippocampus as a cognitive map. Oxford; New York: Clarendon Press; Oxford University Press. ISBN 0198572069. OCLC 4430731. Archived from the original on 2019-09-27. Retrieved 2006-09-27.
9. ^ Jump up to:a b Miller, Adam M. P.; Jacob, Alex D.; Ramsaran, Adam I.; Snoo, Mitchell L. De; Josselyn, Sheena A.; Frankland, Paul W. (2023-06-21). "Emergence of a predictive model in the hippocampus". Neuron. 111 (12): 1952–1965.e5. doi:10.1016/j.neuron.2023.03.011. ISSN 0896-6273. PMC 10293047. PMID 37015224.
10. ^ Sargolini, Francesca; Fyhn, Marianne; Hafting, Torkel; McNaughton, Bruce L.; Witter, Menno P.; Moser, May-Britt; Moser, Edvard I. (May 2006). "Conjunctive representation of position, direction, and velocity in entorhinal cortex". Science. 312 (5774): 758–762. Bibcode:2006Sci...312..758S. doi:10.1126/science.1125572. PMID 16675704.
11. ^ Goldstein, E. Bruce (2011). Cognitive psychology: connecting mind, research, and everyday experience (3rd ed.). Belmont, CA: Wadsworth Cengage Learning. pp. 11–12. ISBN 9780840033550. OCLC 658234658.
12. ^ Glickman, Stephen E. (1992), "Some thoughts on the evolution of comparative psychology.", in Koch, Sigmund; Leary, David E. (eds.), A century of psychology as science, American Psychological Association, pp. 738–782, doi:10.1037/10117-048, ISBN 978-1-55798-171-4, retrieved 2020-03-18
13. ^ Nadel, Lynn (2008-03-20). The Hippocampus and Context Revisited. Oxford University Press. doi:10.1093/acprof:oso/9780195323245.001.0001. ISBN 978-0-19-986926-8.
14. ^ Jump up to:a b Society, National Geographic. "National Geography Standard 2". nationalgeographic.org. Retrieved 2020-04-06.
15. ^ M. A., Geography; B. A., Geography. "Mental Maps: You Don't Need a GPS to Get Where You Want to Go". ThoughtCo. Retrieved 2020-04-06.
16. ^ Schenk, Frithjof Benjamin. "Mental Maps: The Cognitive Mapping of the Continent as an Object of Research of European History Mental Maps". EGO(http://www.ieg-ego.eu). Retrieved 2020-04-06.
17. ^ Lloyd, Robert (March 1989). "Cognitive Maps: Encoding and Decoding Information". Annals of the Association of American Geographers. 79 (1): 101–124. doi:10.1111/j.1467-8306.1989.tb00253.x. JSTOR 2563857.
18. ^ Jump up to:a b c d Jacobs, Lucia F.; Schenk, Françoise (April 2003). "Unpacking the cognitive map: the parallel map theory of hippocampal function". Psychological Review. 110 (2): 285–315. doi:10.1037/0033-295X.110.2.285. PMID 12747525.
19. ^ Siegel, Alexander W.; Allik, Judith P.; Herman, James F. (March 1976). "The Primacy Effect in Young Children: Verbal Fact or Spatial Artifact?". Child Development. 47 (1): 242. doi:10.2307/1128306. ISSN 0009-3920. JSTOR 1128306.
20. ^ Jump up to:a b Manns, Joseph R.; Eichenbaum, Howard (October 2009). "A cognitive map for object memory in the hippocampus". Learning & Memory. 16 (10): 616–624. doi:10.1101/lm.1484509. PMC 2769165. PMID 19794187.
21. ^ Jump up to:a b c Moser, Edvard I.; Kropff, Emilio; Moser, May-Britt (2008). "Place cells, grid cells, and the brain's spatial representation system". Annual Review of Neuroscience. 31: 69–89. doi:10.1146/annurev.neuro.31.061307.090723. PMID 18284371.
22. ^ Jump up to:a b c Bennett, Andrew T. D. (January 1996). "Do animals have cognitive maps?". The Journal of Experimental Biology. 199 (Pt 1): 219–224. Bibcode:1996JExpB.199..219B. doi:10.1242/jeb.199.1.219. PMID 8576693.
23. ^ McNaughton, Bruce L.; Battaglia, Francesco P.; Jensen, Ole; Moser, Edvard I.; Moser, May-Britt (August 2006). "Path integration and the neural basis of the 'cognitive map'". Nature Reviews Neuroscience. 7 (8): 663–678. doi:10.1038/nrn1932. PMID 16858394. S2CID 16928213.
24. ^ Jacobs, Lucia F. (2003). "The Evolution of the Cognitive Map" (PDF). Brain, Behavior and Evolution. 62 (2): 128–139. doi:10.1159/000072443. PMID 12937351. S2CID 16102408.
25. ^ Jump up to:a b c Blasidell Aaron, Cook Robert (2004). "Integration of spatial maps in pigeons". fr.booksc.org. Retrieved 2022-04-24.
26. ^ Jump up to:a b Olthof, Anneke; Sutton, Jennifer E.; Slumskie, Shawna V.; D'Addetta, JoAnne; Roberts, William A. (1999). "In search of the cognitive map: Can rats learn an abstract pattern of rewarded arms on the radial maze?". fr.booksc.org. Retrieved 2022-04-24.
27. ^ Jump up to:a b Grieves, Roderick M.; Dudchenko, Paul A. (2013-05-01). "Cognitive maps and spatial inference in animals: Rats fail to take a novel shortcut, but can take a previously experienced one". Learning and Motivation. 44 (2): 81–92. doi:10.1016/j.lmot.2012.08.001. ISSN 0023-9690.
28. ^ Rodríguez, Fernando; Quintero, Blanca; Amores, Lucas; Madrid, David; Salas-Peña, Carmen; Salas, Cosme (August 11, 2021). "Spatial Cognition in Teleost Fish: Strategies and Mechanisms". Animals. 11 (8): 2271. doi:10.3390/ani11082271. ISSN 2076-2615. PMC 8388456. PMID 34438729.
29. ^ Vinepinsky, Ehud; Cohen, Lear; Perchik, Shay; Ben-Shahar, Ohad; Donchin, Opher; Segev, Ronen (September 8, 2020). "Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish". Scientific Reports. 10 (1): 14762. Bibcode:2020NatSR..1014762V. doi:10.1038/s41598-020-71217-1. ISSN 2045-2322. PMC 7479115. PMID 32901058.
30. ^ McNaughton, Bruce L.; Battaglia, Francesco P.; Jensen, Ole; Moser, Edvard I; Moser, May-Britt (August 2006). "Path integration and the neural basis of the 'cognitive map'". Nature Reviews Neuroscience. 7 (8): 663–678. doi:10.1038/nrn1932. ISSN 1471-003X. PMID 16858394. S2CID 16928213.
31. ^ Sternberg, Robert J.; Sternberg, Karin (2012). Cognitive Psychology (6th ed.). Belmont, CA: Wadsworth, Cengage Learning. pp. 310–315. ISBN 978-1-111-34476-4.
32. ^ Montello, D. R. (2009). "Cognitive Geography" (PDF). ucsb.edu.
33. ^ Papageorgiou, Elpiniki; Stylios, Chrysostomos; Groumpos, Peter (2003). "Fuzzy Cognitive Map Learning Based on Nonlinear Hebbian Rule". In Gedeon, Tamás Domonkos; Fung, Lance Chun Che (eds.). AI 2003: Advances in Artificial Intelligence. Lecture Notes in Artificial Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 256–268. doi:10.1007/978-3-540-24581-0_22. ISBN 978-3-540-20646-0. ISSN 0302-9743.
34. ^ Sperling, G. (2001-01-01), "Motion Perception Models", in Smelser, Neil J.; Baltes, Paul B. (eds.), International Encyclopedia of the Social & Behavioral Sciences, Pergamon, pp. 10093–10099, ISBN 978-0-08-043076-8, retrieved 2020-04-06
35. ^ "Repertory Grids". kellysociety.org. Retrieved 2020-04-06.
https://www.nature.com/articles/s41593-020-00708-1
(Robert Muller, 1998)
https://www.livescience.com/health/neuroscience/the-brain-may-move-between-related-ideas-in-the-same-way-it-navigates-from-one-location-to-another
A cellular basis for mapping behavioural structure
https://www.nature.com/articles/s41586-024-08145-x
which then became
How we discovered specific brain cells that enable intelligent behaviour
Published: May 1, 2025 5.28pm CEST
https://theconversation.com/how-we-discovered-specific-brain-cells-that-enable-intelligent-behaviour-254233
https://psycnet.apa.org/record/1980-09217-001
https://pmc.ncbi.nlm.nih.gov/articles/PMC2649674/#R3
Deep Reinforcement Learning and Its Neuroscientific Implications
Author links open overlay panelMatthew Botvinick 1 2, Jane X. Wang 1, Will Dabney 1, Kevin J. Miller 1 2, Zeb Kurth-Nelson 1 2
https://www.sciencedirect.com/science/article/pii/S0896627320304682
https://www.degruyterbrill.com/document/doi/10.7312/jung21336-003/pdf?srsltid=AfmBOoqcRR0RRaF1U9XVuJJsbWUJt4lEPbPbBxcov4wzb3kzuWgnH-mQ
https://pmc.ncbi.nlm.nih.gov/articles/instance/1693150/pdf/12740104.pdf).
J.V. girl penfield
https://pmc.ncbi.nlm.nih.gov/articles/PMC10542740/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4082468/